Ziel-orientiert

„Wer heute schon auf Sensoren und Konnektivität setzt, ist auf dem besten Weg zu Industrie 4.0 & IoT.“

Das Ziel ist klar, manchmal. Manchmal auch nicht. Hauptsache irgendetwas mit „Industrie 4.0“, was und wie ist egal. So kommt einem so manche Strategie zur digitalen Transformation vor. Dabei bietet eine richtig umgesetzte Unternehmensausrichtung zur smarten Fabrik viel Potenzial und auf dem Weg dorthin schon so einige tief hängende Früchte. Also zugreifen.

In der „finalen“ Industrie 4.0 fertigen wir auf Kundenwunsch in Losgröße 1, die Maschinen und Materialien koordinieren sich dafür selbständig und wir haben die volle Transparenz und Flexibilität, die wir für eine smarte Produktion benötigen. Doch der Weg dorthin ist lang und steinig und das Ergebnis wird sicherlich nicht ganz so rosa-rot aussehen wie eingangs geschildert. Leider sind diese Unwägbarkeiten oftmals ein Grund dafür, dass entsprechende Projekte nicht oder nur zögerlich angegangen werden. Dabei können auf dem Weg in die Industrie 4.0 schon zahlreiche Vorteile realisiert und genutzt werden, die helfen, die Akzeptanz zu erhöhen und Investitionen schneller zu amortisieren. Ganz so, wie beim autonomen Autofahren. Schon heute helfen Sensoren im „connected Car“, die Spur zu halten und einzuparken, all das, was in einem Gesamtsystem zum autonomen Fahren benötigt wird.

Der Entwicklungsstand zu einer vollvernetzten, optimierten Produktion lässt sich in vier Phasen aufteilen:

» Phase 1: Sichtbarkeit umsetzen
» Phase 2: Transparenz schaffen
» Phase 3: Prognosefähigkeit sicherstellen
» Phase 4: Adaptierbarkeit nutzen

In den folgenden Abschnitten werden die zunehmenden Vorteile und der Nutzen auf diesem Weg betrachtet.
Sichtbarkeit umsetzen

In Phase eins geht es primär darum, einen digitalen Schatten, also ein Abbild, der Produktion herzustellen. Dieses Abbild verschafft in erster Linie Sichtbarkeit, um zu überblicken, was gerade (in Echtzeit!) passiert. Das können ganz kleine Teilprojekte sein. Eine Anlage, die nicht nur an der Signallampe anzeigt, dass sie eine Störung hat, sondern auch im Andon-Board oder Hallencockpit des Meisters. Das Problem wird daher sofort sichtbar, nicht erst, wenn der Meister in der Werkhalle steht und die Ampel im Blick hat.


Im Beispiel der vorausschauenden Wartung wäre ein Remote Monitoring der Komponente, Maschine oder Anlage ein Einstiegsscenario. Realisiert wird dies mittels Sensoren, die die reine Verfügbarkeit anzeigen (Maschine läuft/läuft nicht) bzw. bereits relevante Parameter wie Temperatur oder Vibration überwachen und die Daten an eine zentrale Stelle senden.

Transparenz schaffen

Die zentrale Stelle leitet bereits die Phase zwei ein. Die gesendeten Sensordaten können sehr schnell zu Massendaten (Big Data) anwachsen. Um den Überblick zu behalten und Transparenz zu schaffen, muss ein zentraler Punkt der Wahrung geschaffen werden. Das bedeutet nicht unterschiedliche Datenbanken mit verschiedenen Interpretationsmöglichkeiten, sondern quasi die nicht aggregierten (also nicht bereits zusammengefassten) Stammdaten, auf der alle weiteren Auswertungen basieren. Alleine diese Tatsache wird im Unternehmen schon Doppelarbeit vermeiden und Entscheidungen beschleunigen, da kein Datenabgleich mehr notwendig ist.

Die Geschwindigkeitsvorteile einer In-Memory-Datenbank wie der SAP HANA erlauben auch, auf die vorherige Aggregation von Daten zu verzichten. Dies führt ebenfalls zu schnelleren Entscheidungen, da nicht zunächst eine Nacht vorher ein „Datenlauf“ stattfinden muss. Die Auswertung der historischen Daten wird

„In der finalen Industrie 4.0 melden Sensoren die Daten, die Vernetzung transportiert die Daten an die richtige Stelle und mit intelligenten Algorithmen wird aus Big Data endlich Smart Data.“
Prognosefähigkeit sicherstellen

Und schon befinden wir uns in Phase drei, der Prognosefähigkeit. Durch Predictive Services wird man in die Lage versetzt, mit bestimmter Wahrscheinlichkeit Vorhersagen über Zustandsänderungen in der Zukunft zu machen. Der Vorteil ist, dass man auf gewisse Situationen besser vorbereitet ist und dieser Kenntnisstand bereits in der Planung optimiert genutzt werden kann. Es passieren weniger Ausfallzeiten und die Wartung findet nur dann statt, wenn es sein soll/muss und kann darüber hinaus in Zeiten passieren, die weniger oder gar nicht produktionsrelevant sind.


Ein entscheidender Faktor ist hier die Mustererkennung. Für die Maschinenlernumgebung ist eine intelligente Sensorik und Vernetzung notwendig. Über die erfassten Daten (Big Data) kann dann mittels Analytics eine automatisierte Mustererkennung laufen oder man bedient sich entsprechender Analyse-Experten (Data Analyst) am Markt, um wiederkehrende Mustererkennung zu betreiben. In einer smart vernetzten Produktion mit intelligenten Maschinen ist es auch vorstellbar, dass Komponenten selber mit Hilfe eines digitalen Produktdatenblattes gleich eigene Muster (Fingerprint) mitliefern, die z. B. zu bekannten Fehlern führen. SAP bietet mit dem Asset Intelligent Network (AIN) basierend auf der SAP HANA Cloud Platform (HCP) dafür bereits heute eine entsprechende Cloud-Datenbanklösung.

Adaptierbarkeit nutzen

Dann sind wir schon fast in der finalen Phase 4 und damit bei Industrie 4.0 angekommen. Die Sensoren melden die Daten, die Vernetzung transportiert die Daten an die richtige Stelle und mit intelligenten Algorithmen wird aus Big Data endlich Smart Data. Somit ist die Basis für eine autonome oder teilautonome Produktion gelegt. In unserem Beispiel kann der Instandhaltungsplan automatisch unter Einbezug der Sensoren und Mustererkennung und unter Berücksichtigung der Auftragslage in Echtzeit optimiert werden. Vor Ort wird dem Instandhalter dann auf dem Tablet oder in der Datenbrille die Arbeitsanweisung angezeigt und die Durchführung kontrolliert. Nach Abschluss der Arbeiten meldet sich die Anlage wieder selbständig zum Dienst!

Résumé

Viele Unternehmen sind somit schon drin, auf dem richtigen Weg zur smarten Fabrik und wissen es vielleicht noch gar nicht. Wenn man eine Vision hat, ist es auch gar nicht mehr schwierig, die richtigen Entscheidungen heute zu treffen, um die Vision in kleinen Schritten umzusetzen und schon jetzt davon zu profitieren. Groß denken, klein starten! Wichtig ist, gehen Sie jetzt den nächsten kleinen Schritt, frei nach dem Motto: „Ein kleiner Schritt für Ihr Unternehmen, aber ein großer Schritt für die smarte Zukunft.”

Referenzen
[1] Studie des Weltwirtschaftsforums und des Beratungsunternehmens Accenture

www.t-h.de

Trebing + Himstedt ist SAP-Experte für Connected Manufacturing & Services und strategischer Partner für den Bereich SAP Manufacturing. Konzerne und Mittelstands- kunden verschiedener Industriebereiche werden dabei unterstützt, durchgehende Prozesse vom SAP ERP bis zur einzelnen Maschine zu realisieren.